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1. Theoretical underpinnings

Profit of a business activity is considered to be the main goal of
ny for-profit organization. For this very reason, profit maximiza-
ion criterion is also the corner stone of virtually any model in
ainstream economic theory. Formally, the profit-maximization

ramework typically starts with a premise that the main goal is
he (maximal) profit, defined as

(Ψt ) = sup
x,y

{p(y)y − w(x)x : (x, y) ∈ Ψt} , (1.1)

where x = (x1, . . . , xN ) ∈ RN
+

and y = (y1, . . . , yM ) ∈ RM
+

are
column vectors of inputs and outputs, respectively, and w(x) =

w1, . . . , wN ) ∈ RN
+

and p(y) = (p1, . . . , pM ) ∈ RM
+

are row
vector functions of their corresponding prices, which in general
are functions of the quantities of inputs demanded and quantities
of outputs supplied, and Ψt is the relevant technology set charac-
terizing what is feasible to produce at time t and defined, in very
general terms, as

Ψt ≡ {(x, y) : x can produce y}. (1.2)

arious assumptions are usually made on the technology set,
t , sometimes referred to as regularity conditions of production
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theory and typically include free disposability (or monotonic-
ity) of inputs and outputs, no free lunch, feasibility of no ac-
tivities, closedness, boundedness of the outputs set and so on
(e.g., see Sickles and Zelenyuk, 2019), which we accept here.

Furthermore, when concerned with measuring relative effi-
ciency, a common benchmark relative to which all firms can
be measured or referenced to is useful. A natural and perhaps
the ultimate benchmark for economic efficiency measurement is
the one implied by the perfectly competitive market equilibrium
under full information, which implies that the input and output
prices are exogenous to a firm in its decision making on (x, y) in
(1.1). I.e., the benchmark is given by

π (w, p|Ψt ) = sup
x,y

{py − wx : (x, y) ∈ Ψt} , (1.3)

where the row vectors w = (w1, . . . , wN ) ∈ RN
+

and p =

p1, . . . , pM ) ∈ RM
+

now do not depend on x and y. In this
paper we will also focus on the static case and therefore drop
the subscript t , leaving the dynamic case (e.g., those involving
Bellman equations) for future research.

Many profit efficiency measures have been introduced in the
literature, e.g., see Färe et al. (2019) for a review and references. A
general measure of profit efficiency, can be stated for an observed
quantity vector (xj, yj) and price vector (w, p), as following

E (xj, yj;w, p|Ψ ) = sup
θ,λ,x,y

{ψ(θ,λ) :

j j
ψy(p, y , θ) − ψx(w, x ,λ) ≤ py − wx, (1.4)
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(x, y) ∈ Ψ , θ ∈ Θ, λ ∈ Λ}

where ψ(θ,λ) is an objective function chosen by a researcher, to
be optimized jointly over θ = (θ1, . . . , θM ) and λ = (λ1, . . . , λN )
nd (x, y), while ψx(w, x,λ) and ψy(p, y, θ) are the functions

that define the way how the measurement of the efficiency is
conveyed with regard to each element of input vector x and of
output vector y, and where Θ and Λ are the set of permissible
values of θ and λ.1

It is worth noting that the formulation (1.4) is slightly more
general than the original that appeared in Färe et al. (2019), who
were more explicit, by letting ψy(p, yj, θ) =

∑M
m=1 pmθmy

j
m and

x(w, xj,λ) =
∑N

i=1wiλix
j
i, with Θ = RM

+
and Λ = RN

+
. This more

eneral formulation (1.4) is also a way to formalize what one may
hink of as ‘producer preferences’ stated via an optimization crite-
ion that is more general than a profit function, which subsumes
he latter as a special case and allows for incorporating various
bjectives of the firm.2
This general profit efficiency measure can be viewed as a

ual analogue of a technical efficiency measure that satisfies
areto–Koopmans efficiency criterion, but in addition to tak-
ng into account efficiency with respect to technology it also
akes into account the quintessence of the market environment
here the firm operates. That is, it also incorporates the prices
hat reflect the current valuations of both buyers and sellers
n those markets. In this sense, this measure can be viewed
s one that satisfies a superior criterion relative to the (pri-
al) Pareto–Koopmans efficiency criterion that only considers

echnical efficiency.
Many measures of efficiency known in the literature can be

educed from (1.4) directly or after some transformations, as was
etailed in Färe et al. (2019). This also includes the directional dis-
ance functions and the so-called Nerlovian or directional profit
fficiency measure (Chambers et al., 1998), defined as

E(xj, yj, p, w|−dx, dy,Ψ ) ≡
π (w, p|Ψ ) − (pyj − wxj)

(pdy + wdx)
, (1.5)

where (−dx, dy) is a nonzero vector in RN
−

×RM
+

that characterizes
the direction in which the distance between (xj, yj) and the fron-
tier of Ψ is to be measured. Indeed, if we let ψ(θ,λ) = α, such
that θ = αdy and λ = αdx and set ψy(p, yj, θ) = p(yj + αdy) and
ψx(w, xj,λ) = w(xj − αdx), then we get

E (xj, yj;w, p|Ψ )

= sup
α

{
sup
x,y

{
p(yj + αdy) − w(xj − αdx) ≤ py − wx : (x, y) ∈ Ψ

}}
= sup

α

{
sup
x,y

{
(py − wx) − (pyj − wxj)

pdy + wdx
: (x, y) ∈ Ψ

}
≥ α

}
= sup

α

{
π (w, p|Ψ ) − (pyj − wxj)

pdy + wdx
≥ α

}
=
π (w, p|Ψ ) − (pyj − wxj)

pdy + wdx
.

Moreover, a particularly interesting case of (1.4) is derived by
setting λ1 = λ2 = . . . = λN = 1 and θ1 = θ2 = · · · = θM = θ and
ψ(λ1, . . . , λN ; θ1, . . . , θM ) = θ , while ψy(p, yj, θ) =

∑M
m=1 pmθmy

j
m

1 Some constraints may be needed on Ψ (in addition to standard regularity
onditions), e.g., to regularize the non-decreasing returns to scale cases, where
rofit maximization may diverge to ∞ or degenerate to 0. See Färe et al. (2019)
or more details.
2 E.g., see discussion in Rubinstein (2006, p. 83–84) regarding the importance
f incorporating other criteria than just profit. We thank the anonymous referee
or this insight.
and ψx(w, xj,λ) =
∑N

i=1wiλix
j
i to obtain

Eo(xj, yj;w, p|Ψ ) = sup
θ,x,y

{θ :

pyjθ − wxj ≤ py − wx, (x, y) ∈ Ψ } (1.6)

hich in turn can be stated in terms of the sup-sup (or ‘maxi-
ax’), as

o(xj, yj;w, p|Ψ )

= sup
θ

{
sup
x,y

{
py − wx + wxj

pyj
: (x, y) ∈ Ψ

}
≥ θ

}
. (1.7)

While looking very complicated and ‘too theoretical’, Färe et al.
2019) also derive several very intuitive versions of this measure,
hat are composed of simple and intuitive notions often used in
usiness analysis. Specifically, they showed that

o(xj, yj;w, p|Ψ ) =
c j

r j
+
π (p, w|Ψ )

r j
, (1.8)

here c j = wxj, r j = pyj are the observed total costs and
otal revenue of the firm at the allocation (xj, yj) that face prices
w, p).3

That is, intuitively, (1.8) says that the profit efficiency mea-
ure defined in (1.6) or (1.7) can be decomposed into two key
erformance indicators used in business analysis: (i) the realized
ost-benefit ratio and the best possible profit margin for the firm
ith allocation (xj, yj) that faces prices (w, p). Note that the first
omponent is the reciprocal of the “return to the dollar” measure
f performance advocated by Georgescu-Roegen (1951).4
Another useful decomposition, which appears to be new, can

e obtained by further decomposition of the observed cost benefit
atio, to get

o(xj, yj;w, p|Ψ ) =
π (p, w|Ψ )

r j
(1.9)

+ CE(xj, yj, w|Ψ ) × RE(xj, yj, p|Ψ )
×CBR∗(xj, yj, w, p|Ψ ),

here CE(xj, yj, w|Ψ ) is the cost efficiency measure for the al-
ocation (xj, yj), technology Ψ and input prices w, defined as

E(xj, yj, w|Ψ ) =
wxj

C(yj, w|Ψ )
, (1.10)

here C(y, w|Ψ ) is the classical cost function defined as

(y, w|Ψ ) = min
x

{wx : (x, y) ∈ Ψ }, (1.11)

hile RE(xj, yj, p|Ψ ) is the revenue efficiency measure for al-
ocation (xj, yj), technology Ψ and output prices p, defined as

E(xj, yj, p|Ψ ) =
R(xj, p|Ψ )

pyj
, (1.12)

nd R(x, p|Ψ ) is the classical revenue function defined as

(x, p|Ψ ) = max
y

{py : (x, y) ∈ Ψ }, (1.13)

nd, finally, CBR∗(xj, yj, w, p|Ψ ) is the cost benefit ratio involving
he optimal cost (from cost-minimization perspective (1.11)) and

3 It should be clear that this measure can also be deduced from Nerlovian
rofit efficiency measure by setting dy = yj and dx = 0 and adding 1 (see Färe

et al., 2019 for further details).
4 Färe et al. (2019) also show that this profit efficiency measure can be further

decomposed into three sources: (i) revenue efficiency, (ii) Farrell technical
efficiency (output oriented here) and (iii) a new allocative efficiency measure
measuring the gap between profit maximization and revenue maximization.
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optimal revenue (from revenue-maximization perspective (1.13)).
Various other decompositions can be derived in a similar manner,
for example for an input oriented analogue or for a generalized
hyperbolic analogue or for a specific direction and we leave these
to the readers. E.g., for a related extensive discussion that links
efficiency and productivity analysis with business and account-
ing measures, see Grifell-Tatjé and Lovell (2015) and references
therein.

In practice, a researcher typically does not observe Ψ and so
cannot obtain the true value of π (w, p|Ψ ) and thus of Eo(xj, yj;w,
|Ψ ), yet the analytical developments in the next section allow an
asy computation.

. DEA and FDH estimation under the same prices

Introduced by Farrell (1957), generalized and popularized
y Charnes et al. (1978) and elaborated further in a rich inter-
isciplinary literature, DEA estimator found many applications
n both academic and industry research. Statistical properties
consistency and limiting distributions) of DEA are also well
ocumented (Simar and Wilson, 2015). While there is a myriad of
ariations of DEA, here we will focus on the most popular version,
hich assumes variable returns to scale (VRS).
To facilitate further discussion, let xk = (xk1, . . . , x

k
N ) ∈ RN

+
and

k
= (yk1, . . . , y

k
M ) ∈ RM

+
be observations on inputs and outputs for

decision making unit k ∈ {1, . . . , n}, then the DEA formulation
or the maximal profit function can given by

(w, p|DEA-VRS) ≡ max
x1,...,xN , y1,...,yM

z1,...,zn

M∑
m=1

pmym −

N∑
l=1

wlxl, (2.1)

s.t.
n∑

k=1

zkykm ≥ ym, m = 1, . . . ,M,

n∑
k=1

zkxkl ≤ xl, l = 1, . . . ,N,

n∑
k=1

zk = 1,

zk ≥ 0, k = 1, . . . , n.

While there are different approaches to show what this op-
timization problem reduces to, here we will use the strategy
employed by Färe and Grosskopf (1985) for the cost efficiency
and its revenue analogue in Zelenyuk (2020). To do so, first note
that because the optimization is done over all x and all y, for
a continuous function over a closed set, with strictly positive
prices for inputs and outputs, there exists an optimum where all
the inequalities turn to equalities (i.e., no slacks). Thus, one can
multiply each mth output equality constraint by the correspond-
ing output price pm, (m = 1, . . . ,M) and sum these inequality
constraints over m; similarly, one can multiply each ith input
equality constraint (2.1) by the corresponding input price wl,
(l = 1, . . . ,N), while keeping the other constraints the same, to
get the equivalent to the following optimization problem

π (w, p|DEA-VRS) = max
z1,...,zn

n∑
k=1

zkrk −

n∑
k=1

zkck,

s.t.
n∑

k=1

zk = 1,

zk ≥ 0, k = 1, . . . , n,

where rk = pyk and ck = wxk.
Finally, let π k
:= rk − ck and note that we have

∑n
k=1 z

krk −∑n
k=1 z

kck =
∑n

k=1 z
kπ k and so the last optimization problem

simplifies to:

π (w, p|DEA-VRS) = max{π1, . . . , πn
}. (2.2)

That is, one can compute π̂ (w, p) without information on
(w, p) and even without information on (xj, yj) when all firms
are assumed to face the same prices for inputs and outputs
(e.g., equilibrium prices or average prices). In particular, one can
simply use the aggregated information about costs and revenue,
(c j, r j), for each j to compute the observed profit for each j,
rank the computed profits across all j and select the highest
value, which will be π̂ (w, p) for the given sample. This result
is especially useful for cases when the dimensions of x and y
are very large, e.g., including ‘big data’ cases, because the DEA
estimator is known as not immune from the so-called ‘curse of
dimensionality’ problem.

Also note that the same result holds for the case of DEA with
decreasing returns to scale, i.e., when

∑n
k=1 z

k
= 1 is replaced

with
∑n

k=1 z
k

≤ 1. A similar result can also be derived for the
DEA with constant returns to scale (i.e., when

∑n
k=1 z

k
= 1 is

removed from the formulation) when additional constraints are
imposed (e.g., maximal bounds on inputs) that will prevent the
objective function going to infinity.

Moreover, this result also holds for the Free Disposal Hull
(FDH) estimator, proposed by Deprins et al. (1984), because it can
be represented as the DEA-VRS problem where zk ≥ 0 is replaced
with zk ∈ {0, 1}, and so by similar logic we get

π (w, p|FDH) = max{π1, . . . , πn
}. (2.3)

This result can also be obtained by noting that the maximal
profit defined in (1.1) is the same whether it is optimized on
a non-convex technology set Ψ or on the ‘convexified’ version
of this technology set and so we have π̂ (w, p|DEA-VRS) =

π (w, p|DEA-NIRS) = π̂ (w, p|FDH). See Färe and Li (1998) for a
related discussion.

It is also worth noting that the latter result, about the equiva-
lence of the (long run) profit maximization with and without the
convexity assumption, is different from what is known for other
optimizations in economics, e.g., cost minimization, revenue max-
imization, etc. For example, see Briec et al. (2004) who appear to
be the first to prove that cost functions computed with respect to
convex technologies are always below those with respect to non-
convex technologies. Also, see Balaguer-Coll et al. (2007) and Ang
et al. (2018) for further empirical evidence.

3. Concluding remarks

While looking fairly simple (after seeing the proof), this result
opens the door for many applications including those where the
dimensionality of the output space is too large in comparison
with the available sample size, including the so-called ‘big wide
data’ cases.

With this result, the obtained efficiency estimates, in fact,
might even have more valuable information about efficiency from
an economic point of view, since they incorporate such econom-
ically important information as output prices, the corresponding
allocation of inputs and the underlying behavior of the decision
making units.

For example, for measuring such profit efficiency briefly de-
scribed above, if one wants to use the DEA framework for esti-
mating Ψ , then the estimated output oriented Farrell-type profit
efficiency measure can be obtained as

Êo(xj, yj;w, p|Ψ̂ ) =
c j

+
max{π1, . . . , πn

}
, (3.1)
r j r j
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where max{π1, . . . , πn
} is the estimated profit function from

2.2), obtained without actual computation of the DEA or FDH
odel, and it is possible even if the dimensions of inputs and out-
uts are too large for DEA and FDH to handle, as long as the total
evenue and the total costs are observed for the firms of interest.
oreover, note that Êo(xj, yj;w, p|DEA-VRS) =

ô(xj, yj;w, p|DEA-NIRS) = Êo(xj, yj;w, p|FDH). In a similar fash-
on, this result may be also adapted for estimating other profit
fficiency measures.
A natural question is what happens if firms face different

rices. In this case the result we derived above does not hold
n general, yet it may still hold approximately for small varia-
ions around the common price benchmark used. This common
rice benchmark can be viewed as a common reference (e.g., an
quilibrium or an average tendency for the prices), in a similar
eaning as one selects a common frontier reference for measur-

ng technical efficiency, to make the efficiency scores comparable
cross different firms. Investigating how much the variation of
rices matter theoretically, via simulations or empirically could
e a fruitful alley for future research.
Finally, and to conclude this note, among the closely related

irections for future research, it is worth noting on the pos-
ibility to generalize this result for dynamic cases, e.g., using
ellman equations and involving dynamic productivity indicators
e.g., see Färe and Zelenyuk (2019) and references there in).
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